
Quantum saturation of the order parameter and the dynamical soft mode in quartz

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 315

(http://iopscience.iop.org/0953-8984/15/2/331)

Download details:

IP Address: 171.66.16.119

The article was downloaded on 19/05/2010 at 06:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/2
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) 315–320 PII: S0953-8984(03)53624-4

Quantum saturation of the order parameter and the
dynamical soft mode in quartz

F J Romero1 and E K H Salje2

1 Departamento de Fı́sica de la Materia Condensada, Universidad de Sevilla,
PO Box 1065, 41080 Sevilla, Spain
2 Department of Earth Sciences, University of Cambridge, Downing Street,
Cambridge CB2 3EQ, UK

E-mail: fjromero@us.es and es10002@esc.cam.ac.uk

Received 18 September 2002
Published 6 January 2003
Online at stacks.iop.org/JPhysCM/15/315

Abstract
The temperature evolution of the static order parameter of α-quartz and its
soft-mode frequencies were determined at temperatures below 300 K. While
these parameters follow classic Landau theory at higher temperatures, quantum
saturation was found below room temperature with a characteristic quantum
temperature of 187 K. A quantitative analysis gave a good agreement with the
predictions of a �6 model close to the displacive limit and a rather flat dispersion
of the soft-mode branch. No indication of any effect of strong mode–mode
coupling on the saturation behaviour was observed.

1. Introduction

Two characteristic temperatures are needed for the quantitative description of structural phase
transitions. The first is a transition temperature Tc. The second characteristic temperature
is the saturation temperature θs below which the order parameter becomes independent of
temperature. The existence of a finite temperature θs is a manifestation of the third law of
thermodynamics, which requires that entropy changes, and hence order parameter changes,
disappear at absolute zero temperature. The interplay between Tc and θs has been investigated
theoretically [1] and experimentally [2–6] showing that the phase transition is suppressed by
quantum fluctuations for Tc � θs . Exact limits can easily be derived for specific dispersion
relationships of the fluctuations; the case of flat, Einstein mode-type oscillations was discussed
in [1]. The importance of quantum saturation was demonstrated in the case of the ferroelastic
phase transition in SrTiO3 with Tc = 105.65 K and θs = 60.75 K where saturation effects are
noticeable even at temperatures close to Tc [7, 8].

Soft modes with very weak dispersion are encountered in perovskite structures which often
show a flat phonon branch between the R and the M point of the cubic Brillouin zone [9, 10].
The same is expected in the case of the β → α transition in quartz [11]. In this transition, the
strength of the interactions between rotating SiO4 tetrahedra is also known from atomistic
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calculation (J = 70–150 cm−1) [12], so a direct comparison between the experimental
observations and the theoretical model of Salje et al [1] is possible under the condition that
all other interactions in this complex crystal structure are ignored. This condition leads to
a puzzle, however. Atomistic calculations have shown that the soft mode in quartz couples
strongly with other phonon branches, in particular the branch near 149 cm−1. This effect is also
borne out by the experimental observation [6] that hard modes in quartz show stronger order
parameter coupling than in other silicate structures. In fact, the driving force for the β → α

transition is the collapse of the specific volume (a non-symmetry-breaking process) while the
geometrical transition process is obtained by symmetry-breaking tetrahedra rotations which,
by themselves, contain little excess enthalpy [13]. The soft mode is expected, therefore, to
couple strongly with other degrees of freedom which could, in principle, renormalize θs (but
not necessarily Tc). These arguments are somewhat counterbalanced by calculations by Pérez-
Mato and Salje [14] who showed that couplings with secondary degrees of freedom have
little effect on the temperature evolution of the order parameter unless the coupling strength
becomes very strong. We will show in this paper that the saturation behaviour in quartz is
in full agreement with a soft-mode picture with no observed renormalization by secondary
processes. The quantum temperature saturation is found to be the same for the spontaneous
strain, the order parameter and the frequency of the soft mode.

2. Experimental details

Part of a natural quartz sample from Brazil was crushed and ground to a fine powder. The
powder was mixed with Si as an internal standard and placed in a novel high-resolution
diffractometer fitted with a cryostat [15, 16]. A focused and strictly monochromatic Cu Kα1

beam was diffracted by the powder and registered by a 120◦ (2θ) position-sensitive detector
(120-PSD). The 2θ resolution of the detector was 0.027◦. Refinement of the powder data led to
temperature-independent uncertainties of ±0.0006 Å for lattice constants. The measurements
were carried out on heating and cooling the sample in the temperature range 30–300 K, in
steps of 3 K.

Raman spectra were recorded with a DILOR Z24 spectrometer in single-mode operation,
coupled with a Coherent 90-2 argon-ion laser. The incident wavelength was 514 nm; the
spectral resolution was 2 cm−1. The temperature control allowed reproducible adjustments
within a temperature stability of 1 K.

3. Results and discussion

The temperature evolution of the lattice parameters is shown in figure 1,where we also show the
lattice parameters obtained from x-ray and neutron powder diffraction from [13] in the range
10–900 K. Our data agree very well with the previous ones but allow a better characterization
of the low-temperature behaviour.

Taking the almost temperature-independent data of the β-phase as the baseline, we find
the components of the spontaneous strain e1 and e3. In a first test of self-consistency of the
two data sets, we show in figure 2 that the two independent components e1 and e3 correlate
linearly (e3 = 0.573e1) over the full temperature interval within experimental errors, so we do
not need to distinguish between these components any further.

In order to compare the experimental behaviour and the theoretical one predicted by Salje
et al [1], the analytical description of the temperature dependence of the spontaneous strain
was obtained by fitting the above model, taking into account the nearly tricritical behaviour of
quartz and considering that the spontaneous strain scales with the square of the order parameter:
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Figure 1. The temperature depen-
dence of the lattice parameters of
quartz from our data (circles) and
from [13]: neutron data (squares) and
x-ray data (triangles).
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Figure 2. The linear correlation
between the components of the
spontaneous strain e1 and e3 from
our data (circles) and from [13]:
neutron data (squares) and x-ray data
(triangles).
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T

)
(1)

where T0 is the fitted transition temperature which, in principle, can differ very slightly from
Tc as discussed in [1]. A standard least-squares fitting procedure yielded the value θs = 187 K
(figure 3).
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Figure 3. The evolution of e2
1 as

determined from our data (circles)
and from [13]: neutron data (squares)
and x-ray data (triangles). The line is
the fit of the Salje et al model [1].
The quantum temperature saturation
is θs = 187 K.
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The soft-mode frequency was obtained from the Raman spectroscopy study (figure 4). Due
to the mode coupling which occurs in quartz, the soft-mode frequency had to be determined
indirectly. Scott [17–19] identified the 207 cm−1 mode as the soft optic mode which is
considered to go to zero frequency at Tc. The peak at 147 cm−1 is seen as an excitation
of two-edge acoustic phonons and it is assumed to be temperature independent. The soft optic
mode couples anharmonically to the two-phonon continuum.

The coupled-mode equation is given by [17, 18]

ω± = 1
2 (ω1 + ω2) ± 1

2 [(ω1 − ω2)
2 + 4|W12|2]1/2 (2)

where ω1(T ) is the soft-mode frequency, ω2 is the temperature-independent two-acoustic-
phonon state whose value is 160 cm−1 [17] and W12 is the off-diagonal matrix element in the
anharmonic Hamiltonian connecting the two states. Scott found that W12 varies linearly with
the temperature in quartz [18, 20].

From our Raman data in the region 10–300 K and taking the values of ω2 and W12

determined by Scott, we obtain the temperature dependence of the squared soft-mode
frequency associated with the phase transition (figure 5(a)). In the same figure, we have
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Figure 5. (a) ω2
+ from [19] (open stars), ω2− from [19] (open circles), ω2

1 from [19] (full diamonds),
ω2

1 from [20] (open diamonds), ω2
+ as measured in this study (full circles), ω2

1 as deduced in this
study (open squares). The continuous line is the prediction for T < Tc from the inverse unrelaxed
order parameter susceptibility with F = 0.8 J−1 cm−2 mol. Note that all the data for T < Tc are
referred to the left axis; (b) experimental data for the squared soft-mode frequency (open triangles,
from [21]). The continuous line is the prediction from the calculated susceptibility for T > Tc

with F = 0.24 J−1 cm−2 mol. Note that the data for T > Tc are referred to the right axis.

also represented values of the squared soft-mode frequency and the squared coupled-mode
frequencies determined previously [17, 19, 20]. Our data allow us to study the low-temperature
behaviour of the soft mode and to determine whether the quantum saturation temperature
determined previously is in agreement with these data. Note that the details of the mode–
mode coupling analysis have little to do with the determination of the saturation behaviour
at low temperatures; in all scenarios the phonon frequency remains temperature independent
below the saturation point.

To see whether the saturation behaviour in quartz is in agreement with the soft-mode
picture, we compare the soft-mode frequency with the predictions of the Landau behaviour for
quartz using the quantum saturation temperature obtained from the strain measurements.

The frequency of a classical soft mode for T > Tc is expected to be proportional to the
order parameter susceptibility:

ω2 = Fχ−1 (3)

where F is the inverse effective mass and χ−1 is given by a(T − Tc), where a = 9.8
J mol−1 K−1 [13]. As Carpenter et al [13] showed for the soft mode in β-quartz [21], the
agreement in this case is very good. We obtain a value of F = 0.24 J−1 cm−2 mol (figure 5(b)).

Below the transition temperature a similar behaviour is expected but we have to take
into account that the coupling between strain and order parameter provides the dominant
stabilization energy for α-quartz and it is also responsible for the first-order character of the
transition [13]. As has been found in [13], when phonon coordinates operate on a much faster
timescale than the strain, the phonon susceptibility is given by the unrelaxed susceptibility [13]:

χ−1 = aθs

(
coth

θs

T
− coth

θs

T0

)
+ (2b + b∗)Q2 +

1

3
(8c + 7c∗)Q4 + (4d + 3d∗)Q6 (4)
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where a = 9.8 J mol−1 K−1; b∗, c∗, d∗ are the renormalized values of the fourth-
order, sixth-order and eighth-order coefficients in the Landau expansion, whose values are
b∗ = −1921 J mol−1, c∗ = 10 190 J mol−1 and d∗ = 0; and b, c and d are respectively the
bare fourth-, sixth- and eighth-order coefficients of the Landau expansions whose values are
b = 4900 J mol−1, c = 17 200 J mol−1 and d = 1600 J mol−1. The order parameter Q is
obtained from the Landau potential determined by Carpenter et al [13], but considering the
quantum saturation temperature θs = 187 K determined previously.

The previously obtained soft-mode frequency data could be fitted to the unrelaxed order
parameter susceptibility taking a value of the inverse effective F = 0.8 J−1 cm−2 mol, obtaining
a good description of the low-temperature data. This model is the continuous line in figure 5(a).

The different values of the inverse effective mass for T > Tc and T < Tc can be explained
in terms of other degrees of freedom which play an important role for T > Tc [22]. In fact,
one could speculate that the observed ‘soft mode’ at T > Tc is not the thermodynamically
relevant excitation as concluded from results in [22], but that strong coupling exists with other
low-frequency modes. A detailed analysis is difficult but our results lend credence to the idea
that a simple soft-mode picture is not adequate for the description of the dynamics of the
β-phase of quartz.

In conclusion, we find that the temperature evolution of the spontaneous strain, the soft
mode and the structural order parameter in the α–β phase transition in quartz are well described
by the model of Salje et al [1] near the displacive limit. Only one quantum saturation
temperature (θs = 187 K) is needed to describe the observations.
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